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Abstract— We describe a PUF design with integrated error 

correction that is robust to various layout implementations and 

achieves excellent and consistent results in each of the following 

four areas: Randomness, Uniqueness, Bias and Stability. 133 PUF 

devices in 0.13 µm technology encompassing seven circuit layout 

implementations were tested. The PUF-based key generation 

design achieved less than 0.58 ppm failure rates with 50%+ 

stability safety margin.  1.75M error correction blocks ran error-

free under worst-case V/T corners (±10% V, 125ºC/-65ºC) and 

under voltage extremes of ±20% V.  All PUF devices 

demonstrated excellent NIST-random behavior (99 cumulative 

percentile), a criterion used to qualify random sources for use as 

keying material for cryptographic-grade applications.  

Keywords - Physical Unclonable Function (PUF); Error 

Correction; Key Generation; ASIC; NIST Randomness 

I.  INTRODUCTION 

A. Background and Motivation 

Physical Unclonable Functions (PUFs) implemented in 
silicon devices are used to produce output bits that are a 
function of manufacturing variations.  These accumulated bits 
correspond to a hardware biometric signature that can be used 
to identify silicon devices based on Hamming distance 
comparisons.  Identification is performed by comparing a 
regenerated sequence of PUF output bits on a silicon device 
against a previously provisioned sequence [1, 4, 6-7, 9, 17]. 
Inter-class variation is derived using pair-wise Hamming 
distance comparisons between two sequences of PUF output 
bits from different PUF devices.  Intra-class variation is a 
measure of the amount of PUF noise present by comparing the 
Hamming distance between a provisioned sequence of PUF 
output bits and a regenerated sequence, possibly under a 
significantly different environmental condition than during 
provisioning. 

In the recent years, there have been numerous works 
regarding the use of PUFs for cryptographic key generation [1-
2, 7, 10-13, 16, 18-21].  A reliability algorithm is added to the 
PUF circuit to account for PUF noise, which typically increases 
with increasing change in environmental conditions (e.g., 
voltage, temperature) between a provisioning condition, where 
a reference snapshot of the PUF output bits sequence is taken, 
and a regeneration condition.  While there have been several 
error correction schemes developed under the assumption of a 
particular PUF noise model, there are relatively few works 
where comprehensive PUF key generation results, i.e., ones 
obtained empirically from a PUF + reliability algorithm 

implementation, have been demonstrated under extreme 
environmental variations. 

The current work describes a PUF architecture and 
reliability algorithm combination robust to various PUF circuit 
layout implementations, where each PUF circuit produces 
“random-looking” raw PUF output bits and further these bits 
can be reliably and efficiently error corrected.  We note while it 
is possible to produce a PUF with random-looking bits, for 
example by applying bit-wise XOR of two or more 
manufacturing-variation-derived bits to produce a composite 
PUF output bit, these PUF bits may not error correct reliably 
and efficiently.  We obtained excellent and consistent empirical 
results in the areas of Randomness, Uniqueness, Bias, and 
Stability across seven distinct PUF circuit-level 
implementations (constituting 133 PUF devices), including 
ones derived using a Standard-Cell ASIC design flow as well 
as ones derived using a full-custom Custom-Cell ASIC design 
flow.  This helps to accelerate widespread deployment by 
reducing performance sensitivities associated with the specifics 
of a particular layout implementation.  

B. Our Contribution 

This paper makes the following contributions: 
 
� PUF circuit-level designs: Standard-Cell, Custom-Cell, 

and low-power designs are described that include 
techniques to reduce area and power. 

� Extensive characterization of PUF key generation 
ASIC implementation:  Randomness, Uniqueness, Bias, 
and Stability.  

� PUF architecture + reliability algorithm combination 
robust to various layout implementations:  Consistent 
results for 133 PUF devices regardless of layout 
implementation specifics. 

� Large stability safety margin:  50%+ unused error 
correction capacity for 133 PUF devices tested under 
extreme environmental variations, after an aggregate of 
1.75M+ tests.  

We present comprehensive experimental results through 
direct empirical testing of an integrated PUF + reliability 
algorithm implementation under high environmental variations, 
including worst-case voltage-temperature corners.  We 
introduce stability safety margin, computed as the proportion of 
error correction capacity remaining under some specified 
environmental conditions, for a certain number of test runs. 



   This is important to help account for scaling issues 
associated with a large-scale deployment, to provide a safety 
margin for very large population sizes, manufacturing skews, 
aging, radiation damage, etc.  We also demonstrate consistent 
results in the areas of Randomness, Uniqueness, Bias, and 
Stability from a variety of PUF circuit implementation layouts, 
including Standard-Cell designs as well as Custom-Cell 
designs.  This is important to achieve widespread deployment, 
as some ASIC design houses may not have Custom-Cell layout 
and design capabilities.  Finally, this work “starves” the power 
rail of PUF circuits to greatly reduce power consumption while 
preserving the PUF key generator performance.  We note that 
in the present work, we focus on the description and 
presentation of results on four of these PUF circuit 
implementations comprising 76 PUF devices.  The results here 
are representative of the larger data set. 

C. Related Works 

Gassend et al. introduced silicon PUFs in [6] [7], where the 
notion of Inter- and Intra-device variation was used to measure 
the quality of a silicon PUF circuit for an authentication 
application.  Gassend [7] pioneered the use of error correction 
with silicon PUFs using a 2-D error correction Hamming code.  
Suh [18] took a more robust approach to account for 
environmental noise using a single-stage BCH(255) code.  
Bösch [2] introduced a two-stage error correction approach.  
Maes [11-12] introduced the use of soft-decision error 
correction coding.  Yu [20] used an information-theoretically 
secure Index-Based Syndrome coding approach to achieve 
robust error correction as an alternative to Code-Offset 
Syndrome [5] used in the previous approaches [2, 7, 11-12, 18].  
Paral [13] used yet another alternative to Code-Offset 
Syndrome, specifically a pattern matching technique, to derive 
stable PUF key bits. 

 

TABLE I.  PUF KEY GENERATION RESULTS COMPARISON 

 Temperature 
Volt-

age 

V/T 

Corners 

Stability 

Safety 

Margin 

NIST 

STS 

Bösch -20ºC to 80ºC n/a n/a n/a n/a 

Maes n/a n/a n/a n/a n/a 

Yu -55ºC to 125ºC ±10% 2-corners 50% n/a 

Seli. -40ºC to 80ºC ±10% n/a 24% n/a 

Paral -25ºC to 85ºC n/a n/a n/a n/a 

This 

Work 
-65ºC to 125ºC ±20% 4-corners 50%+ Yes 

 
 
Table I contains a summary of published PUF key 

generation results. Bösch [2] developed error correction 
schemes using a PUF noise profile obtained from [8], which 
did not explicitly account for voltage effects.  Maes [11-12] did 
not specify the temperature and voltage ranges covered by the 
PUF noise profile used.  Yu [20-21] lacked a 4-corner analysis 
and NIST randomness data.  Selimis in [16] lacked worst-case 
voltage-temperature analysis, and under single parameter (e.g., 
temperature only or voltage only) analysis achieved a 24% 
stability safety margin under the assumption that an error 
correction scheme can correct up to a quarter of the PUF bits 

being noisy (flipped), i.e., a fractional Hamming distance of 
0.25, which is the theoretical limit for a conventional single-
stage error correction scheme such as a BCH code [3] [14].  
Paral [13] lacked voltage data, though the results corresponded 
to an RFID deriving power from its antenna implying some 
voltage fluctuation.  The current work accounts for a wide 
temperature range, a wide voltage variation, and contains a 4-
corner voltage-temperature (V/T) analysis.  Additionally, a 
50%+ stability safety margin remains even under these extreme 
conditions for 1.75M test runs covering 133 PUF devices, 
illustrating the empirical robustness of the error correction 
scheme used; there is plenty of error correction capacity or 
headroom in the error correction algorithm to correct additional 
errors, e.g., due to factors not explicitly accounted for in these 
tests. PUF output bit sequences are subjected to extensive 
NIST Randomness Statistical Test Suite (STS) testing, yielding 
consistent results for 133 PUF devices.  

II. ARCHITECTURAL CHOICES 

A. An Empirically Robust Combination 

The current work analyzes and leverages prior results to 
derive an empirically robust combination of PUF architecture + 
reliability algorithm choices. One of the design goals was to 
derive a PUF key generation design that has a high tolerance to 
a variety of PUF layout specifics.  In this section, we describe 
the choices made and the rationale.   

i. PUF Architecture Chosen and Rationale 

For the PUF architecture, we chose a k-sum PUF 
architecture based on [20], shown in Figure 1.  This was 
considered superior to an approach where pair-wise PUF ring 
oscillators were compared [19], since the summation structure 
allows PUF oscillator pairs that are closer to each other in 
frequency (the noisy pairs) to not affect the overall PUF output 
bit as much due to the summation (averaging) process.  The 
approach was also considered superior to an Arbiter PUF [7] 
[10] [13] approach in that a traditional Arbiter PUF does not 
produce “soft-decision” information at the PUF output to 
indicate the strength of the “1” or the “0” produced.  The 
approach was also considered a better choice than a PUF based 
on initial SRAM values (memory PUF) [2, 9, 11-12, 17] in that 
soft-decision information can be readily obtained from (the 
sum of) oscillator comparisons at a higher resolution. 
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Figure 1: k-sum PUF 



 
 

Figure 2: PUF Cryptographic Key Generation ASIC Block Diagram 
 

ii. Reliability Algorithm Chosen and Rationale 

For the reliability algorithm, the two-stage approach in [20], as 
opposed to the single-stage approach in [21], was chosen, so 
that an empirical stability safety margin measure can be readily 
derived to help account for unknowns in a large-scale 
deployment.  Index-Based Syndrome (IBS) coding [20] was 
used instead of Code-Offset [5], to achieve additional coding 
gains inherent in the index-coding scheme, on top of the noise-
reduction associated with the oscillator summation (averaging) 
process.  In IBS, an index points to a strong representation of a 
“1” bit or a “0” bit, where each bit can be either a data bit (the 
“k” portion of an ECC block) or a parity bit (the “n-k” portion 
of an ECC block).  We use a 4-bit index, selecting the strongest 
representation out of 16 “Soft Decision” PUF Output Bit 
choices.  We select either the maximum difference of top and 
bottom delay terms (ref: Figure 1), with the difference 
represented as a signed (e.g., a 2’s complement) value, or the 
minimum difference of top and bottom delay terms, depending 
on whether we want to encode a “1” bit or a “0” bit.  For the 
BCH stage, a BCH (n = 63, k = 30, t = 6) code using a three-
module architecture, consisting of a Syndrome Computer, 
Euclidean Solver, and Chien Search finite field factoring 
algorithm, was used. 

As shown in Figure 2, the user selects one or more PUF 
banks to generate a cryptographic key (four of these PUF bank 
implementations are presented).   A typical PUF bank consists 
of 128 oscillators and requires 768 NAND2 equivalent gates; 
shared PUF control and processing logic is used for all the 
banks.  An incremental bank growth can provide for more 
keying material.  The output of the PUF is processed by a two-
stage error correction block, using Index-Based Syndrome 
(IBS) coding and BCH coding [20].  The error correction is 
empirically robust and provably secure since the hardware 
algorithms integrated into the ASIC use secure constructs from 
[20] and [21].  Downstream cryptographic functions, such as 
hash function and AES, use the PUF-derived key for 
cryptographic applications. 

B. Circuit-Level Implementations 

The ASIC architecture used a “banked” approach to allow 
different implementation types to be compared.  The 

implementations include circuit innovations that improved area 
and power.   The simulated power measurements in the typical 
PVT dropped from 309.7 µW per PUF oscillator (“S”) to 49.9 
µW (“CO”), which is approximately a factor of 6.2.  These 
circuits are further described below.  

A reference starting design (Figure 3) is the Standard-Cell 
PUF (“S”), which uses 36 standard-cells, INVX1.  These are 
arranged in a 9x4 configuration, where standard-cell inverter 
gates are used as dummy loads to slow the oscillation.  One of 
the inversion stages is implemented with a NAND gate to start-
stop the oscillator.  The oscillator output is buffered to prevent 
output feedback noise from negatively affecting the oscillation. 

 

 
Figure 3: Standard-Cell PUF (“S”) 

 

The reference standard-cell design was optimized for area 
(and power) as shown in Figure 4.  The Standard-Cell 
Optimized PUF (“SO”) uses an innovative technique where 
standard-cell gates are used to starve the ring oscillator power 
rails.  The standard-cell gates are arranged in cascade, where 
the output of one standard-cell gate is fed into the power rail of 
the next.  This requires creative manipulation of Standard-Cell 
ASIC layout tools.  The number of inverter equivalents was 
reduced from a reference value of 36 to 9.  Simulation showed 
a 2.6x reduction in power consumption compared to the 
reference (“S”) implementation, from 309.7 µW to 116.8 µW 
per PUF oscillator.  A custom level-shifter was designed to 
give the ring oscillator output a full-range voltage swing.  This 
implementation achieved excellent results in each of the four 
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categories of testing: Randomness, Uniqueness, Bias, and 
Stability; the results looked relatively similar to the other 
implementations, while achieving power/area savings.   

 

 
 

Figure 4: Standard-Cell Optimized PUF (“SO”) 
 

In Figure 5, we move to a full-custom PUF circuit layout 
implementation approach, to compare the savings.  After 
simulating various topologies, the Custom-Cell PUF (“C”) 
design was derived, using a triple-stacked PMOS/NMOS 
structure to increase input loading.  The simulated power per 
oscillator is 72.96 µW, which is a 4.2x reduction from the 
reference “S” implementation. 

 

 
 

Figure 5: Custom-Cell PUF (“C”) 
 

In Figure 6, we implemented a power/area-optimized 
variant for the Custom-Cell PUF shown in Figure 5, by adding 
power rail starvation using a network of pass-gate PMOS 
transistors.   The resulting Custom-Cell Optimized PUF 
(“CO”) achieved a simulated power per PUF oscillator of 
49.91 µW, which is a 6.2x reduction from the reference “S” 
implementation. 

 

 
 

Figure 6: Custom-Cell Optimized PUF (“CO”) 

As it will be shown in Section III, the Randomness, 
Uniqueness, Bias, and Stability results do not vary appreciably 
across all four implementations. 

 

III. PERFORMANCE METRICS AND EMPIRICAL RESULTS 

Using PUFs as the basis for cryptographic key generation 
requires significant analysis beyond the Intra-class and Inter-
class metrics used for PUF-based authentication.  It is 
important to analyze the Randomness of PUF output bits in 
addition to PUF Uniqueness (i.e., Inter-class variation).  PUF 
Bias (the proportion of 1s in a PUF output bit sequence) needs 
to be analyzed; a non-negligible bias reduces the guessing 
entropy of the PUF output bit sequence.  Finally, Stability of 
the PUF error correction mechanism needs to be analyzed 
under various environmental conditions, including worst-case 
corners.  A total of 133 PUF devices, comprising seven PUF 
circuit layout implementations, each underwent empirical tests 
in all four areas, namely, Randomness, Uniqueness, Bias, and 
Stability, all producing consistent and excellent results.  This 
section focuses on the presentation of results for 76 PUF 
devices, encompassing four PUF circuit implementations.    

A. Randomness 

In Figure 7, the rightmost column on the top row (“RND”) 
represents the NIST pass rate distribution when NIST-
recommended random bits are applied to the NIST statistical 
tests for randomness [15]; note that the top of each plot shows 
the min/max pass rates.  The distribution obtained for the four 
PUF implementations closely resembles the results from 
“RND”, showing a degree of indistinguishability between PUF 
randomness test results vs. random bits test results.  The bottom 
row of Figure 7 shows the minimum pass rates for each of the 
15 NIST tests (92%+) as well as the Cumulative p-values 
(99.9%+ pass) and Cumulative Proportions (99%+ pass).  
NIST testing and indistinguishability are common techniques 
used for entropy source analysis and cryptographic analysis, 
and we leverage those techniques on PUF output bits from a 
PUF Key Generation ASIC. 

B. Uniqueness 

For PUF Uniqueness testing (Figure 8), all four PUF 
implementations produced a Gaussian distribution for the Inter-
class variations.  Furthermore, as the number of PUF 
comparisons increases from 34K to 1.1M, obtained by applying 
more challenges to each PUF device, the µ (statistical mean) 
converges to 0.5, and σ (standard deviation) does not flare out.  
We are able to show µ convergence (based on law of large 
numbers, and specifically that a sample mean approaches the 
true mean for random processes as sample size increases) and σ 
convergence (student-t converges to Gaussian) based on 
empirical ASIC data as the basis for PUF uniqueness 
extrapolation to very large sample sizes.  One conclusion that 
one could draw from these results is that as the number of PUF 
devices and number of PUF response comparisons increase to a 
very large number, the standard deviation σ should not get 
worse and flare out, and the statistical mean µ should not 
deviate from an ideal value very close to 0.5, providing a 
measure of assurance for the uniqueness of PUF-derived 
values.   
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C. Bias 

For the PUF bias tests (Figure 9), all four PUF types 
produce bias distributions that are well within ±1% of ideal, 
beyond which the bias becomes cryptographically significant in 
that NIST randomness tests would likely, and readily, fail.  In 
cryptographic applications, one is concerned not only about 
average security, but also worst-case security.  The average 
bias is within 1% of 1% from ideal (0.50003).  The worst-case 
bias is at 0.49698, within half a percent of ideal.  For the 
bottom row of Figure 9, the bias mean is shown on the bottom 
of each plot corresponding of each of the four PUF 
implementations, and the worst-case bias value is shown on 
top. 

D. Stability 

For PUF stability testing (Figure 10), all four PUF 
implementations produced highly stable PUF output bits with 
50%+ stability safety margin under all the conditions tested.  A 
total of 1.75M+ error correction blocks (63 bits each) were 
provisioned under nominal voltage (1.2V) and room 
temperature (25ºC), and subsequently regenerated under 
voltage extremes of ±20% V, and also regenerated under the 
four VT corners of ±10% V, -65ºC/125ºC.  No error bits were 
observed after full error correction, and no more than three bits 
of errors remain after first-stage error correction (IBS 
decoding).  

There are three rows in the figure.  The first row 
corresponds to provisioning under nominal conditions (1.2V, 
25ºC), and regeneration under a high level of voltage stress of 
±20% V while maintaining the same temperature.  The second 
row corresponds to provisioning under the same nominal 
conditions, and regeneration under the slow-fast and fast-slow 
voltage-temperature corners.  The third row corresponds to 
provisioning under the same conditions and regeneration under 
the slow-slow and fast-fast voltage-temperature corners.  We 
note that six regeneration conditions (two per row) are shown 
in the row legend.  Each plot contains two histograms 
representing the raw PUF noise, with the fitted Gaussian µ, σ 
displayed below each plot.  The spike at zero bits represents the 
post error correction result; since all the errors were corrected, 
this is also the sample size for a particular combination of test 
condition. The pair of triplets near the top of each plot 
corresponds to the maximum error bits observed i. at the raw 
PUF output, ii. after first-stage ECC (IBS decoding), iii. after 
second-stage ECC (BCH decoding) for each of the two 
regeneration conditions.  The middle number for each triplet 
indicates how many bits out of the six-bit BCH error correction 
capability were used, from which a stability safety margin (bits 
of error correction capability unused, out of 6 bits) 
measurement can be derived. 

 

 

 
Figure 7: PUF Randomness 

 

Note: The top row shows the NIST randomness test pass rates for the 4 PUF implementations as well as the test results for NIST-

recommended random bits (the right most “RND” column).  The top of each plot shows the min, max pass rates.  The bottom 

row shows the minimum pass rates for each of the 15 NIST randomness test items.   



 
Figure 8: PUF Uniqueness 

 

Note: The top row contains the inter-class PUF distribution for the 4 PUF implementations with 34k comparisons. When the 

number of comparisons is increased to 1.1M (bottom row), both the µ and σ values do not increase and show convergence. 

 

 

 
 

 
Figure 9: PUF Bias 

 

Note: The top plot contains the PUF bias distributions for 76 PUF devices. The bottom row contains plots for the 4 PUF 

implementation types, with the bias mean shown at the bottom of each plot, and the worst-case bias value shown on top. 

 



 

 
Figure 10: PUF Stability 

 

Note: For all cases, provisioning was performed at 1.2V, 25ºC.  Six regeneration conditions are shown. The top row shows 

regeneration under +/- 20% voltage.  The middle row shows regeneration under fast-slow and slow-fast voltage-temperature 

corners.  The bottom row shows regeneration under slow-slow and fast-fast voltage-temperature corners.  Each plot contains two 

histograms representing the raw PUF noise, with the fitted Gaussian µ, σ displayed below each plot.  The spike at zero bits 

represents the post error correction result; since all the errors were corrected, this is also the sample size.  The pair of triplets near 

the top of each plot are the maximum error bits observed at the raw PUF output, after first-stage ECC (IBS decoding) and after 

second-stage ECC (BCH decoding) for each of the two regeneration conditions.  The error correction block size is 63 bits.  The 

middle number for each triplet indicates how many bits out of the six-bit BCH error correction capability is used, from which a 

stability safety margin (amount of correction capacity unused, out of 6 bits) measurement can be derived. 

 

TABLE II.  PUF IMPLEMENTATION COMPARISONS, 0.13µm ASIC 

   NIST Randomness Uniqueness Bias Stability 

 
Pwr

a 

(µW) 

Area
a 

(µm
2
) 

min-pass
 

(%) 

Cum 

p-val
 

(%) 

Cum 

prop
 

(%) 

mean wc 
margin

b
 

wc noise
c
 

S 310 200 94.00 99.94 99.33 0.501 0.49781 
83% 

0.22 

SO 117 65 93.00 99.97 99.38 0.489 0.50160 
83% 

0.22 

C 73 60 94.12 99.97 99.27 0.493 0.49698 
83% 

0.21 

CO 50 43 93.44 99.97 99.36 0.497 0.49868 
83% 

0.19 

a. for each oscillator inversion ring    b. stability safety margin   c. worst-case fractional hamming distance before any error correction 

 

IV. CONCLUSIONS 

We presented empirical PUF key generation test results in 
the context of a PUF ASIC implementation with integrated 

error correction. Specifically, a total of 133 PUF devices 
comprising seven PUF circuit layout implementations were 
designed, implemented, and tested.  Four metrics specific to 
PUF key generation were defined, and empirical data was 
obtained from 0.13 µm ASICs.  The choice of an oscillator 



summation PUF architecture coupled with a two-stage index-
based error correction approach produced consistent 
Randomness, Uniqueness, Bias, and Stability results across all 
these implementations, of which four representatives are 
summarized in Table II.  Since the results are only slightly 
layout dependent, and the design can in fact be implemented in 
a Standard-Cell approach (albeit less optimized), we conclude 
that the PUF key generator design is highly portable across 
different design methods (Standard vs. Custom Cell) and 
particular layout choices (power starved vs. none), which eases 
adoption.  The high (50%+) stability safety margin, 
quantifiable-by-design for this particular PUF key generation 
design, means that excess error correction capability can be 
relied upon to help account for the unexpected in large-scale 
deployments.  Future work includes explicit analysis of process 
scaling. 
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